Dosage and use

To be used in drip irrigation or through liquid fertiliser spreader or injector in non-irrigated areas.

Injection in woody crops or grapes:

5 - 10 ml/plant in a 0.2% solution.

Drip irrigation:

Apply from the start of growth.

Maintain every 30-40 days

7 30 L/ha.

15 L/ha.

1st application: After irrigation or transplant irrigation.

Final application: 30-40 days before the end of the cycle

Total dose: 30 - 90 L/ha.

Trials

Grapes in non-irrigated areas

Aim

Shoot growth between flowering and veraison (cm)

Strategy Control No fertiliser

Change in pH before and after the treatments in two areas of the treated land surface

Pruning weight at the end of the season (kg/grape)

Results

Trials

Grapes with drip irrigation

Vigour measurement

Soil sample, August 26th

Sugar level

2020

of slow-growing plants Vigour of plants chosen (100% = healthy plant)				Sample ORG.20S	
65 —				62.50	
60 —					
55 —		51.	25 51	.43	
50 —		47.14	20 01	.40	
45 —					
40 —	40.00 38.75				
35 —					
30 —					
25 —					
20 —					

	Sample	ORG. 20S	%	
ec. Cond. (Ext. 1/5)	155.00	143.00	-7.7%	
(Extract 1/2.5)	7.84	7.80	-0.5%	
tive Lime	7.98	7.68	-3.8%	
ailable Calcium	21.00	19.90	-5.2%	

Leaf analysis, August 26th 2020

(+33 days applic.)

Azufrera y Fertilizantes Pallarés, SAU

Pol. Ind. de Constantí, Av. Europa, 1-7 ES-43120 Constantí, Tarragona

T. +34 977 524 650

in f 🕲 😉 💷

afepasa@afepasa.com afepasa.com/en

	Sample	ORG. 20S	%
Nitrogen	2.60	2.75	5.8%
Phosphorous	0.14	0.14	
Potassium	0.85	0.85	
Sulphur	0.13	0.14	7.7%
Magnesium	0.27	0.28	3.7
Calcium	2.07	2.44	17.9%
Chlorides	146.00	61.00	-58.2%

Results

ORGANOSUL 20S

Product rich in plant-based organic matter and enriched with sulphur

Your solution for:

Soils poor in organic mat-

microbiomes

Soils with high pH, salinity or sodicity problems

afepasa.com/en

Recovered from industrial acid waste <

Does not pollute the environment with toxic waste.

Biological sulphur recovery

The microorganisms convert different forms of sulphide into elemental sulphur.

。(Orthorhombic)

Sulphur from microorganisms for microorganisms

More easily digested by the Thiobacteria in the soil:

Benefits of elemental sulphur

Thiobacteria absorb sulphur and turn it into hydrogen protons and sulphate ions. When these come into contact with the soil salts and sodium saturating the clay-humus complex, they turn into hydrochloric acid and sodium sulphate and wash them from the soil.

- Reduces electric connectivity
- Washes salts from the soil

Decrease in excess calcium

Advantages of Sultech vs standard sulphur

■ Greater transformation speed ■ Greater capacity for incorporation into the soil

Micronised sulphur DP Phytosanitary dust powder solution Origin: mining or refinery

WG and SC Sulphur Wettable/liquid phytosanitary product Biostimulation

Sultech sulphur Origin: biological

Advantages of plant-based organic acids

- Fulvic and humic acids regulate the carbon and nitrogen cycles in the soil, feeding the microbiome in soils with low levels of life.
- pH correction and short-term micronutrient chelation in alkaline soils due to their content of carboxyl, phenolic and hydroxyl groups.
- Controls salt stress, minimising damage to root cell walls in the short term.
- Increases the cation exchange capacity (CEC) and moisture retention in the soil.
- ☐ Directly stimulates the plant, facilitating the development of new roots.

Sultech and organic matter: win-win combination

- **pH reduction:** Combination of the immediate lowering effect of organic acids with the medium-term effect of Sultech Sulphur.
- **EC control:** Immediate protection against salinity and the progressive washing away of phytotoxic ele-
- Microbiological stimulation: Activation of the general microbiome and nourishment of a group of usually underdeveloped beneficial species (thiobac-

